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Abstract 

Stueckelberg dynamics is regarded as providing a basis for the construction of observer 
centered theories of particle motions. The approach involves the use of a generalized 
Jacobi principle to replace the four-dimensional dynamical theory of Stueekelberg by 
a four-dimensional geometrical theory, and then a three-dimensional dynamics is 
constructed from this. The causal di~culties encountered by Stueckelberg for curves 
which reverse direction in time appear to be absent in the present scheme. 

Our purpose has been to make more concrete, in a simple context, some of the ideas 
involved in the (conventional) causal framework recently constructed by us to deal with 
causal difficulties associated with hyperlight phenomena. Some insight is gained into the 
possible roles to be played by tachyons in a particle theory and interesting results are 
found involving classical Lagrangian and canonical formalisms for lightlike particles. 

1. Introduction 

The motion of a system of N point particles obeying classical equations 
derivable from an Euler-Lagrange principle of stationary action is described 
by the behavior of the system point in a 3N-dimensional configuration 
space. Here the time parametrizes the motion, but it is also possible to 
represent the system by a point in a (3N + 1)-dimensional extended space 
by treating the time as a coordinate. In the extended space, only the system 
point trajectory bears a unique relation to the configuration space motion, 
and corresponding to this the extended space Lagrangian is a homogeneous 
function of the first degree in the velocities and the evolution parameter is 
arbitrary.t 

In the customary theoretical approach to the problems of  particle 
mechanics physical laws are expressed with the aid of  dynamical equations 
which depict the motion of  the particles in time. This corresponds to the 
use of  the configuration space to represent the behavior of  a system as 
determined by the given laws. This is a specifically observed centered 

t See for example Lanczos, C. P. (1957). The Variational Principles of Mechanics. 
University of Toronto Press, Toronto, Ontario, Canada. 
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approach, as observers formulate laws whose cause-effect relation generates 
their (forward) 'motion' in time. On the other hand, there is no physical 
motion in the extended space but something rather more like an overall 
space and time plot from which configuration space motions can be 
determined. A theoretical approach which starts from extended space 
considerations is the following: from regularities exhibited by allowed 
classes of extended space trajectories construct an observer centered 
representation in terms of laws governing a configuration space time 
evolution. 

We may suppose that in the first of these approaches experiment suggests 
the laws, while in the second it suggests the allowed classes of extended 
space trajectories. The sharp separation of space and time found in the 
kinematics of nonrelativistic mechanics and in the configuration space 
formalism makes the first approach natural in nonrelativistic theories. In 
relativistic theories the second approach has the advantage that relativistic 
invariance requirements are readily expressed by means of four-dimensional 
geometry. 

Our purpose is to explore some of the possibilities of the second of these 
approaches in theories of relativistic particle mechanics. To generate 
classes of extended space trajectories we employ a technique based on the 
use of a Stueckelberg action principle (Stueckelberg, 1941, 1942). Our 
method parallels that used in the derivation of Jacobi's principle and it 
leads to variation principles for Minkowski trajectories. 

There is a subtle but important shift in viewpoint from that of Stueckel- 
berg in the present approach; its spirit is that of the (conventional) causal 
framework recently constructed by the author to deal with causality 
problems associated with hyperlight phenomena (Cawley, 1970). We 
regard the observer's role as that of interpreter and classifier of the regu- 
larities of the patterns exhibited by the Minkowski trajectories. The 
observer then describes these in terms of 'laws which govern the behavior 
of systems'. An example of the way this shifts some notions of physical 
'reality' from the world observed to the observer is provided in the remark 
that particles do not 'go' in either direction in time; the time sense of which 
we are aware is macroscopic and is a consequence of the observer's mode of 
representation of natural phenomena resulting from the cause-effect 
relation of physical laws. Indeed, the structure of space and time itself 
reflects physical properties of the observer.t Though the regularities of the 
curves are determined by a Stueckelberg action principle which gives 
equations of motion for all four coordinates, our theory is not an example 
of 'four-dimensional dynamics', because the observer representation 
singles out the time coordinate in every frame for use as a parameter in the 
formulation of laws. This is partly formalized by our deriving action 
principles for the trajectories from the primary Stueckelberg action principle 
for the four-dimensional 'motions'. 

t The assertion that  this statement is false is unprovable because space and time are 
(at least !) observer constructs. 
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In Section 2 we treat the general theory of the Stueckelberg action and 
the Stueckelberg-Jacobi formalism, applying it to free particle examples 
and particles in external fields. In Section 3 we discuss theories in which 
the lengths of the world line tangent vectors are not constant. In Section 4 
we consider canonical theories and in Section 5 we make a few concluding 
remarks. 

2. Independent Trajectories Theory 

A. General Theory (Single Trajectory Case) 
We consider the class of continuous, twice-differentiable curves in 

Minkowski space, 

-F':)t -+ xt' = x~(A), )q <)t  <)t2 and / z = 0 t o  3 (2.1) 

having the property that the functions x~'()t) are derivable as solutions to 
Euler-Lagrange equations resulting from a variation principle based on 
the Stueckelberg action 

A2 

= f dhLs (x()t), dx()t)/d)t) As (2.2) 

The Stueckelberg Lagrangian Ls is required to have no explicit )t- 
dependence. The Euler-Lagrange equations of the variation principle 
defined by the requirement (to first order is always understood), 

3As = 0 (2.3) 

with the variation of As generated by independent infinitesimal vari- 
ations of the x"()t) satisfying 8x"0h ) = 3xU()t2) = 0 and with 3(dxU/d)t) = 
(did)t) x 3xU(x) possess the integral]" 

R(x, ax/a)t)=(ax./aa) a(dx~/d)t) Ls --- -Pa = constant (2.4) 

This follows from the )t-independence ofLs(x, dx/d)t). 
We suppose that x ~ and )t can be expressed as functions of a new variable 
by 

x ~ = x~(~) and A = )t(~) (2.5) 
so that As becomes 

~2 ~2 

As= f d~A'Ls (x,x'/)t')= f deLs(x,x',)t') (2.6) 
Otl ~1 

where )t(oq)= )tl and ~(c~2)= )t2 and primes denote differentiation by ~. 
In equation (2.5) we require that )t'(~) be nonvanishing as this entails no 

t We use the Einstein summation convention for repeated upper and lower indices 
and the space-favoring metric for Minkowski space (gH = g22 = g33 = _gO0 = +1). 
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loss of generality. If we denote by 3'As the variation of the last member of 
equation (2.6) generated by arbitrary independent fixed endpoint variations 
of xU(a) and A(a), with [8', d/da] = 0 giving 8'(dxU/da) and 8'(dA/aoO, then 
equation (2.3) implies 

8' As = 0 (2.7) 

under the stated conditions. Conversely, using A'(~)# 0, one finds that 
the Euler-Lagrange equations generated by the variation principle based 
equation (2.7) include those following from (2.3) together with an additional 
equation equivalent to (2.4). Hence (2.7) can replace (2.3) and A may be 
regarded as a coordinate. 

Since Ls has no explicit A-dependence, h is cyclic and we can eliminate 
it from Ls by solving 

- -  t ! 

F(x, x', A') -- Pa OLs(x, x ,  h ) aA' 0 (2.8) 

for A' and substituting, provided a solution exists. To complete the elimina- 
tion of A we must also reformulate the action principle in terms of variations 
of the x~(~) alone. Let 3"As denote the variation of As so generated, with 
equation (2.8) regarded as having been solved for A' and the solution as 
substituted into equation (2.6). Since equation (2.7) holds for arbitrary 
fixed endpoint infinitesimal variations of x~ and A, and therefore for those 
restricted by equation (2.8), then, regarding x ~ and A as intermediate 
variables, the only contribution to 8"As is from the endpoint terms for the 
A-part; there could be such contributions as it is possible that equation 
(2.8) might not allow 8"A(~l) = 8"A(~2) = 0. Using equation (2.7) we have 

Ls(x,x ,A ) ~" ~l~ 
8"As OA' _ _,~, =paS"A[~ (2.9) 

and by the required constancy ofpa, 
~z 2 

8"As=3 ~f2 d~Ls -_ pa f - d (  3tt do ~ 
0~1 O~ 1 

whereupon 

in which 

o~ 2 

= 8" f d~h'pa 
0r I 

~ 2  

$"As,=a" f daLsa(X,X')=O 
cs 1 

(2.10) 

(2.11) 

Lss(X, x') = Ls(x, x', A') - A'pa (2.12) 
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with A' given implicitly by equation (2.8). It is important to note that while 
is arbitrary some parameter must be chosen in (2.11); the new con- 

figuration space has only three independent degrees of freedom, not four. 
We can rewrite equation (2.8) by substituting 

L~(x, x' ,  ~') -- ;~' L~(x, x'/;t') (2.13) 

and with the help of equation (2.4) find 

F(x, x', ,V) =pa + R(x, x'/A') = 0 (2.14) 

Substituting this result into equation (2.12) gives 

Lsa(X, x') = (Ls(x, x'/A') + R(x ,  x'/A')) (2.15) 

= x ' .  OLs(x, x'/A') (2.16) 
a(x'/;V) 

We observe that equation (2.16) reveals Lsj(X,X') to be a homogeneous 
function of the first degree in the velocities x'(~). 

It may sometimes happen that equation (2.8), or equivalently equation 
(2.14), is satisfied for arbitrary )t'; in this case h' cannot be eliminated from 
Lss and it appears in equation (2.15) as an undetermined function of ~. 
As arbitrary infinitesimal variations of 2t are allowed in equation (2.11) so 
are arbitrary variations of 

/~ = M(A') (2.17) 

where M is any function. In particular, fixed endpoint variations of tz 
produce no additional contribution to 3"Ass and we may regard tz as an 
extra coordinate if we so choose. This makes Lss a function of/z as well 
as x and x', 

Lss = Lsa(X, i ~, x') (2.18) 

and results in an additional Euler-Lagrange equation 

OLss(X, i~, x') 0 (2.19) 
0/z 

We observe that Lss no longer has to be a homogeneous function of the 
first degree in the velocities, but the coordinates number four, not five. 

To determine the content of equation (2.19) we note that 

aLs~(x,~,x')_ (a'2dMO')] -~ ~Ls,(x, 1/a',x') 
0~ \ dA' J O(1/~t') 
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and by equation (2.15) 

aLs,(x, 1/;V,x') = ~_A,2(Ls(x ' x'/a') + R (x, x'/;V)) + ;e x' ( aLs(x, x'/A') 
a(1/a') "~, 

aR(x, x'/a')] 

, . ,  . ,  , aR(x,x'/a') 
=-) t  L.ss + a Lss + a x . (2.20) a(x' /a ')  

where we used equation (2.16) in the last line. Hence, as A' is not permitted 
to vanish, equation (2.19) is equivalent to 

x'.  aR(x, x'/k') 
a(x'/A') 0 (2.21) 

But regarding R as a function of  x, I/)t' and x' we note that 

aR a(x'/a') aR(x,x'/;O 
a(ll;V) = a(l lA')"  a(x' la ')  

= x'. aR(x, x' /Z) 
O(x'/)() (2.22) 

so equation (2.2t) becomes 

OR(x, 1/)(, x') 0 (2.23) 
O(1/2t') 

whence by equation (2.14) 

OF(x, x', A') 
O,V = 0 (2.24) 

This result can be understood as follows. We return momentarily to the 
formulation of  (2.11) which regards just  the x u as coordinates and in 
which A' appears in equation (2.15) and in the equations of  motion for the 
x~ as an undetermined function of =. That equation (2.14) is satisfied for 
any ~' means that arbitrary variations of ?t' produce no change in F. This 
fact has two consequences, the first being the equivalence of  equations (2.14) 
and (2.24) and the second is that equation (2.14) must be expressible as 

F(x, x') = 0 (2.25) 

Equation (2.25) now selects from the solutions to the xU-equations a 
particular first integral. Here (the ~-dependence of) A'(=) will be determined 
from the equations of  motion for the x ~ deriving from (2.1 I) by means of 
the requirement that equation (2.25) be satisfied. 

Thus there are two equivalent formulations of the variation principle 
(2.11) each giving the same Euler-Lagrange equations for the x". In one 
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of these the Lagrangian and the equations of motion contain an arbitrary 
function of** and equation (2.25) appears as a subsidiary condition to these 
equations. In the other the presence of an arbitrary function gives way to 
the appearance of an additional coordinate whose equation of motion 
reduces to equation (2.25). The second of these is more convenient for 
passage to a canonical formalism. 

Finally it may be that in equation (2.14) R vanishes identically; this holds 
in the 'uninteresting' case that Ls is homogeneous of the first degree in 
dx/dA. In that event the variation principle (2.3) already gives trajectories 
and )t may be assigned the role of the arbitrary parameter ** from the start. 

We note that the addition to Ls of a term (dx/d)t). OA(x) = dA(xOt))/d)t 
in equation (2.2) has no effect on the variation of the Stueckelberg action. 
This shows up in Lss(X, x') as the addition of the term 

x'(**). OA(x) = dA~c,)) 

and is therefore unobservable. Finally the variable change, )t ~ X = a)t, 
leaves the formalism invariant at the Stneckelberg level because this still 
leaves Ls with no explicit )t-dependence. This transformation is discussed 
later (cf. Section 2, D). 

B. Single Trajectory Examples (No External Fields) 
We consider the Stueckelberg Lagrangian, 

l (dx~ z 
Ls = ~ \-d~] (2.26) 

and from equations (2.4) and (2.14) we have 

1 _>,2 
Pa = - R  = - ~ \ ~ ]  )t,2 (2.27) 

so the signature of the tangent vector, i.e. the sign of (dx/d)t) z, either +, - ,  
or 0, is constant. Ifpa # 0 we have 

)t'(**) •  x'(**)2] ~/z (2.28) 
= t- 77p  j 

which must be real, and 
, X p2 

Lss(X, x') --- +A .~7~ --- • z) I(x')211/2 (2.29) 

wherein ]2Pal 1/2 > 0 has been denoted by m. Ifpa = 0, equation (2.27) does 
not determine )t', but instead reduces to the equation 

x'(**) ~ = 0 (2.30) 

in addition the Lagrangian (2.29) now has explicit **-dependence, 

Lss(X, x', **) = (A,(**))-I (x,)2 (2.31) 
32 
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with A'(a) an arbitrary function of ~.. This arbitrariness and the subsidiary 
condition (2.30) may be traded for a new coordinate 

2 
= A'(~) (2.32) 

giving 
Lss(X, x',/z) = �89 (x') 2 (2.33) 

For  the bradyon (timelike) case (x') 2 < 0, and if we identify ez with the 
time by choosing ~ = x ~ = t we get 

Lss = q:mb(1 -- • (2.34) 

where • = dx/dx~ dx/dt. The double sign comes from (2.28) so that in 
the one case (upper sign) A increases with the time and in the other case it 
decreases. 

The Stueckelberg-Jacobi action integral runs over increasing values of  
)~ and this is an inappropriate base f rom which to formulate an observer 
representation. Instead we base the theoretical structure on the invariant 
observer time sense by introducing the observer action as an integral over 
increasing time, 

t2 

As2= f dtLs2(x,• (2.35) 
tl 

where the limits are defined by 

tl = min (x~ x~ < tz = max (x~ x~ (2.36) 

and the observer Lagrangian is 

Ls~ --- -m~(1 - ~2) 1/2 (2.37) 

When x"()q) -- x"0t2) is timelike, as it must be in the present example, the 
relation tl < t2 in (2.36) is Lorentz invariant. We may regard one of the 
endpoint events x"(~)  as a production event (cause) and the other as a 
detection event (effect). Note that the observer representation does not 
distinguish the two possibilities X(t) > 0 and X(t) < 0. 

For  the tachyon (spacelike) case we may also choose to identify o~ with 
the time coordinate, getting 

Lss = i m , ( •  2 - I) '/2 (2.38) 

For  hyperlight motion, however, the vector x(Ai) - x(A2) can be spacelike, 
and in that case it is not possible to write the action as an integral over 
increasing time in an invariant way. Corresponding to this a tachyon curve 
has an eventlike character rather than a particlelike character (Cawley, 
1970), with the equations o f 'mot ion '  more properly regarded as determining 
the shape of the line. Consequently, in contrast to the bradyon case, the 
observer representation does not require the introduction of a special 
observer action integral. 
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We can illustrate these remarks by working out  the free tachyon example. 
Suppose coordinates be chosen so that  the x3-axis is along the space par t  
of  the vector x(A1) - xQt2). Choosing e = x 3 = z gives 

Lsj = -4-rnt(1 + (21) 2 + (22) 2 - (2~ 1/2 (2.39) 

where the dot  now means differentiation by z. The Euler-Lagrange equa- 
tions based on equations (2.11) and (2.39), with the boundary  conditions, 

x I ( O )  = x 2 ( O )  = x O ( o )  = x I ( L )  = x 2 ( L )  = O, x ~  = T ( 2 . 4 0 )  

have the solution, 

T xl(z)=x2(z)=O, x~ (2.41) 

We regard the endpoint  events as elementary detection-production events 
and the effect of  the absence o f  external fields over "the region spanned by 
the tachyon line as its straight line shape. Because the world line is spacelike 
neither one of  these events can be regarded as the product ion event (cause) 
in a physically meaningful way. t  Note  that  the observer representation 
does no t  distinguish between the two possible signs o f  X(z) because the 
causal labelling of  the endpoint  events is symmetric. 

For  the pho ton  (lightlike:~) case, again choosing ~ = x ~  t so that  
equation (2.32) reads 

2 
ff = X(t) (2.42) 

we have 
Lss(X,/~, :~) = � 8 9 1 6 3  _ 1) (2.43) 

Passing to the observer representation we have 

t 2 1" 2 

f = f 
tl t l  

where/'1 and t 2 are given by (2.36) and where 

(2.44) 

co = 1/~[ > 0 (2.45) 

t We have discussed in detail in Ref. 3 why in the conventional causal framework a 
tachyon must be regarded as a spatially extended line of matter possessing an eventlike 
character rather than as an elementary particle. Thus it is the entire event complex 
constituted in the whole world line whose production is controlled by the observer rather 
than one of these events (the earlies0 as would be the case for a genuine particle. Despite 
this fundamental observational property of tachyons it is sometimes useful to speak of 
them as if they were particles (extended causal framework) and we often do this for 
economy of presentation. 

:~ We use the word photon in the generic sense to include any particle which moves 
with the invariant speed. 
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That  co cannot vanish follows f rom the fact that the Euler-Lagrange 
equations of  the Stueckelberg action principle, 

d 2 x ~ 
d?t--- T = 0 (2.46) 

do not possess a nontrivial solution with dx~ = 0 and (dx~'/dh) 2 = O. 
The observer equations of  motion are 

d(~o~) = 0, ~z _ 1 = 0 
dt 

which gives 

whence 
t h = 0 ,  c o R = k # 0  

(2.47) 

(2.48) 

x(t) = ~t + x(0), ~2 - 1 (2A9a) 

= lkl (2.49b) 

where k is an arbitrary nonzero constant three-vector. We note that again 
the observer representation does not distinguish between the two possi- 
bilities X(t) > 0 and X(t) < O. 

C. Single Trajectory Examples (External Fields) 

In  a mechanical theory of  particles we may be able to approximate the 
effect of  a large number  of  particles on a single particle by means of  a 
representation involving what observers can call an external field. This 
may in fact be the case for classical electrodynamics of  particlest and in 
any event it provides a convenient starting point for further investigation 
of the Stueckelberg-Jacobi formalism. 

We consider the class of  Stueckelberg Lagrangians, 

Ls(x,  dx/d?t) = E L~s")( x, dx/dh) ( 2 . 5 0 )  
n=0 

where L~s ") is a homogeneous function of dx/dh of  degree n. By Euler's 
theorem on homogeneous functions, 

so 

and 

(dx~/d) 0 0L ~s "~ = nL (s ~) 
O(dxg/d?O 

.it (0) 2- L(2) _t_ 2L(3) R = - - J - , s  ~ s ~ S " b ' ' "  

Lss = x '  aLs(x, x'/A') _ ?t' 
�9 . oE 

(2.51) 

(2.52) 

(2.53) 

"~ Although the self-energy problem for charged tachyons seems to be more serious 
than usual (Cawley, 1970). 
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Equation (2.52) shows that for examples with L~s ") = 0, for n # 1 or 2, 
and L~ 2) = �89 2, the constancy of R guarantees that of the signature 
of the tangent vector x'(~). In such cases the equations of the observer 
representation are such as to forbid motions involving accelerations of 
particles in such a way that they change their speed signature from bradyon 
to tachyon or vice versa. Also, timelike trajectories have X(t) > 0 or X(t) < 0 
and passage from one classification to the other is impossible. For such 
examples as this, and for Pa # 0, we find from equations (2.27)-(2.29) and 
(2.53), 

Lss(X, x') = +me((x') 2) ](Xt)2[ 112 + X t �9 C ( x ,  x t )  (2.54) 
where 

C(x, x') = OL cs')(x' dx/dA) (2.55) 
O(dx/dA) ax/aa=x'/a' 

C(x, x') does not depend on the sign of A'(o 0 because the indicated deriva- 
tive of L~ I) is a homogeneous function of degree zero in dx/dL For Pa = 0 
we have 

Lss(X, t*, x') = �89 (x') 2 + x'. C(x, x') (2.56) 

Some examples of coupling to external fields by means of first degree 
Stueckelberg Lagrangians are 

I/dx\2ll/Z 
LOs 1) = f  ~ )  q)(x) (scalar field) (2.57a) 

LOs1 ) dx = q-d-A" A(x) (vector field) (2.57b) 

/ dx\  Z1-1/2 dx,  dx ~ 
L(s 1) = • ~ }  ~ ~ -  Gu~(x) (tensor field) (2.57c) 

The second of these is the most familiar, and for the bradyon case it generates 
the observer Lagrangians 

L~)(x, • t) = -mb(1 - 5r '/2 4- q(~. A - A ~ (2.58) 

which follows from (2.35), (2.36), (2.54) and (2.55). Since the trajectories 
are everywhere timelike, the relation q < t2 of (2.36) is again an invariant 
one. We see that here the observer representation distinguishes the cases 
X(t) > 0 and X(t) < 0 for a given Ls. The scalar and tensor examples can 
be treated in the same way and with similar results. 

For the tensor field coupling (2.57c) to photon trajectories, Ls does not 
exist anywhere on the actual paths, and for the scalar example aLs/a(dx/dA) 
does not exist. In the first of these the expression (2.2) is meaningless, and 
in the second there is difficulty in evaluating the left side of equation (2.3) 
unless the variations are restricted to (dx/dA) z = 0. But if this is done then 
(2.3) allows arbitrary motion satisfying this condition. To avoid these 
problems in the photon case we confine our remarks to the vector field 
example. 
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First we show that the Minkowski trajectories cannot reverse direction 
in the time coordinate. The condition for reversal to occur is that dx~ = 
�89 pass through zero. At such a point the dxV/d)t must all vanish because 
of the defining condition (dx/d)t) 2 = 0. The Euler-Lagrange equations of 
the Stueckelberg action principle, 

d2 x~ ~ v  
dh 2 (Ot~ A v -  OVA ~') (2.59) 

show that all derivatives of xV must vanish there. But a curve, all of whose 
derivatives vanish at a point, is the physically uninteresting 'constant curve' 
into a single point of Minkowski space. 

This means that not only does/ ,  (invariantly) fail to vanish for all but 
the trivial case, but also it cannot change sign in the motion. Hence the 
observer Lagrangians for the charged lightlike particle are 

L~)(x, co, ~, t) = �89 2 -  1 ) • 1 7 6  (2.60) 

where ~o is given by (2.45). The observer representation again distinguishes 
the two kinds of trajectory by the sign of the coupling. Notice also that the 
invariance of(2.36), i.e. of the relation tl < t2, is guaranteed by the invariant 
constancy of the sign of/z. 

To discuss the tachyon case we recall first that for free bradyons or 
photons initial position and velocity can be controlled, thereby supplying 
the cause to the observed effect of final position and velocity, but that this 
cannot be done for tachyons because production at a given event is not 
physically meaningful.t This feature must govern the interaction of 
observer and tachyon even if the endpoint events of the Stueckelberg action 
integral are timelike or null separated, as they can be for the tachyon in an 
external field. This means that just as in the free tachyon case there is in 
general no observer action integral to be distinguished from the Stueckel- 
berg-Jacobi action integral. The observer representation [for the Lagran- 
gians involving equations (2.57)], does distinguish between the two classes 
of trajectory characterized by the two possible signs of ~'(c 0 for a given ~, 
however, because there are two corresponding Stueckelberg-Jacobi 
Lagrangians, which give two different trajectories between a given event 
pair. 

D. Effect of  lnvariances of Stueckelberg Action 
The simplest invariance is Lorentz invariance, and this appears in the 

observer representation through the invariance of the functional form of 
the observer (or Stueckelberg-Jacobi) Lagrangian. 

More interesting is the invariance to linear transformations of A. While 
addition of a constant to A has no effect in the observer Lagrangian and so 
is uninteresting, multiplication of 2, by a nonzero constant induces a trans- 
formation of equation (2.4) which does survive. In the cases so far con- 

t See footnote on p. 491. The remark of the text is intended to refer only to the context 
of the conventional causal framework. 
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sidered this results in a scale change of m [co, ifpa = 0; cf. equations (2.42) 
and (2.45)] and this can be absorbed, at the observer level, into a re- 
definition of the coupling strength. A sign change of m or co is not possible 
because of the way these are defined. Transformations such as these are 
harmless, since the observer does not directly detect the four-dimensional 
dynamics of the Stueckelberg equations but merely represents in space and 
time language the regularities of the corresponding Minkowski trajectories. 
As we have already emphasized, this feature is the most important point of 
departure of the present approach from the original Stueckelberg theory. 

3. Examples with Variable (dx/d,~) 2 

If the coupling Lagrangian is not of the first degree in (dx/dA) the 
constancy of R does not result in world line tangent vectors of constant 
signature. Particles which experience bradyon motion in field-free regions 
can be accelerated to the speed of light and beyond,t and Minkowski 
trajectories can reverse direction (invariantly) in the time coordinate. 

First we consider the example of Stueckelberg (1941, 1942), 

l [dx~ 2 
L s  = - a r  

where r is a Lorentz scalar field. Equations (2.4) and (2.52) give 

so that 

Pa + 2 \dh] = -ar  

)tt 1- (Xt)2 -]1/2 

= �9 L - 2 p / - - i - a c ( q  

(3.1) 

(3.2) 

(3.3) 

which must be real, and 

(x')2 :ke((x') 2) [(x') 2 (-2pa - 2ar 1/2 (3.4) L s s -  h' 

For simplicity of presentation we suppose for a moment that r = 0 
unless x belongs to a finite domain 2 of Minkowski space. By equation (3.2), 

(Xt) 2 
R = Rfr~e - 2(A,)2 = -p~, x ~ 2 '  (3.5) 

where 2 '  is the complement of 2 .  Observe that the mass parameter, 
defined by m =  [2pal uz, and the signature of (dx/d2t) 2 are the same for 
every segment of the trajectory intercepted by 2 ' .  

t See footnote on p. 491, 
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We observe that equation (3.2) permits 

(dx 2 
~ ]  = 0 (3.6a) 

at events ~ of  the trajectory, where 

Pa = -ar  (3.6b) 

If  the trajectory does not terminate in 9 and if it passes through 9 ' ,  then 
as we move along it from events in 9 '  to events in 9 and back to events in 
9 '  the left side of equation (3.2) passes from zero through nonzero values 
and back to zero. If  in ~ ,  therefore, there is an event :~1 at which equations 
(3.6) are satisfied, then there is another event X2 at which these equations 
are again satisfied, excepting the degenerate case that ~1 = ~2. The points 
~1 and ~2 represent the events g~ and 32 at which the particle passes through 
the light 'barrier' exchanging bradyon motion for tachyon motion (or 
vice versa) and then passes back. When Pa = 0 there are again two 'dis- 
tinguished' events, the intersections of the trajectory with the boundary of 
9 ,  where the motion changes from lightlike to timelike or to spacelike. 

Equations (3.6) induce an invariant breakup of the Minkowski trajectory 
into segments whose tangent vectors have constant signature and this 
results in a decomposition of  the Stueckelberg-Jacobi action, 

Ass = Ass[1 i] + Ass[2 2] + Ass[i  2] (3.7a) 

where the partial actions are 

Ass[rs] = f~ d~Lss (3.7b) 

When additional event pairs satisfy equations (3.6) corresponding terms 
appear in equation (3.7a). To generate an observer representation from 
this breakup we introduce observer actions for the photon and bradyon 
terms of (3.7a) and define a 'total action' as the sum of these observer 
partial actions and the remaining tachyon Stueckelberg-Jacobi partial 
actions. Thus, for example, if the segments between e~ and 3~ and between 
e2 and 32 are timelike, the total action for (3.7a) is 

a~ = Aea[1 i] + Aea[2 ~] + Asj[i  ~] (3.8) 

An illustration is afforded in the example 

q~(x) = a - l  k[x 2 + (x.u)2] -~/2 (3.9) 

where u is a constant unit timelike vector. Equation (3.6b) has solutions 
for Pa > 0 (respectively < 0) when k < 0 (respectively > 0). The example of 
(3.8) corresponds to Pa > 0 and the observer Lagrangian for the partial 
actions over the bradyon segments ea~ and e2~2 is 

Lea = -rob(1 - ~ 2 ) 1 / 2  (1 + 2am-~ 2 $(x, t)) 1/2 (3.10) 
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while for the tachyon part ~ir we have the Stueckelberg-Jacobi Lagrangian 

Lsj = -4-,A~nb((X32) 1/2 ( - t  - 2am'~2~(x)) 1/2 (3.11) 

Notice that the observer representation does not distinguish the two possible 
directions of the four-dimensional Stueckelberg motion along the Min- 
kowski trajectory. Solutions to tile Stueckelberg equations for both signs 
ofpa are given in Appendix A. Note in particular that equation (A.5) shows 
that the trajectories do not reverse invariantly in the time coordinate. 

In the observer representation a free bradyon of mass mb enters the region 
of the field. It accelerates to the speed of light when initial conditions are 
suitable and passes through the 'light barrier' into a tachyon phase, eventu- 
ally slowing back down through the speed of light and emerging into the 
field-free asymptotic region with the mass with which it started. I f  2i - 22 
is spacelike there is a time interval over which initial and final bradyon 
particles are present essentially simultaneously.q" 

Physical laws corresponding to these features are straightforward state- 
ments about what happens to a (free) brad con of mass mb which is sent 
into the region of a Coulomb-like zero-degree Stueckelberg scalar field. 
Depending on initial conditions it may or may not go through the 'light 
barrier' into a tachyon phase. The case of tachyon asymptotic motion is 
similar, though here the laws govern the shape of the entire trajectory given 
xU(hl) and xU(~2). 

A striking illustration of the importance of emphasizing the observer's 
role in the formulation of laws is provided in the example of the Stueckelberg 
'time barrier' field, 

~b(x) = a -1 f ( - x .  u) (3.12) 
e.g. with 

f ( - x .  u) = f ( x  ~ 2 \ x  ~ (3. t 3) 

in the frame with u ~ = 1, u I = u 2 = u 3 = 0. The solutions are worked out 
in Appendix B and examples of the possible trajectories are indicated in 
Fig. 1. As the most difficult case is where Pa > 0 (asymptotic bradyon 
motion), we discuss only this. 

Since initial conditions on the position and the velocity of a bradyon can 
be controlled, these can be specified by the observer at both ends of a 
trajectory of type A of Fig. 1. This would produce an over-determination 
of the curve, given the Stueckelberg or even just a set of Stueckelberg- 
Jacobi equations of motion. If  only a single particle set of initial conditions 
are specified the observer finds that whenever he 'sends a particle into the 
region of  a Stueckelberg "time barrier"' ,  another particle always shows 
up miraculously to annihilate with it. No shield can bar the way to the 
intruder and we have a paradox. 

t We use the term 'essentially simultaneous' to refer to a pair of spaeelike separated 
events~ 

33 
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These arguments overlook an important difference between the time 
barrier field and that of the preceding example. There a part of the set of  
conditions (cause) leading to the scattering of  the incident bradyon is the 
presence of  the field asymptotically, namely, near r = 0. In the asymptotic 
limit the time barrier field vanishes over all space, I f  there are two particles 
present in the remote past and the initial conditions are suitable for the 
realization of  curve A of  Fig. 1, then their annihilation into a material event 
complex (called a tachyon), together with the accompanying emergence of  
the time barrier, occurs. Thus the time barrier field is to be regarded by an 

Figure 1.--Two examples of trajectories generated by the Stueckelberg scalar field 
'time barrier'. The crosses mark the events ~ at which the world line tangent vectors 

are null. 

observer, armed with his time sense, as a part of the effect consequent to 
the cause summarized in the conditions of the incident state. If  initial 
conditions are unsuitable, e.g. if only one particle is present, then the time 
barrier never makes its appearance and we need a new Lagrangian. 

If  rules exist for preparing external fields, something should be said 
about what they are if they are to be objects of  the theoretical framework 
at all. I f  the observer can assure the emergence of  a Stueckelberg time- 
barrier field this must involve additional physical conditions in the initial 
state. Until these are given, no further conclusions can be drawn. (Example: 
an incident particle sees a gaseous bath of anti-particles, with rising density, 
as a time barrier. The timelike world lines of  the anti-particles in the gas 
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link the remote past (zero density) to t - - 0  (infinite density). Note that 
here the time-barrier field is a part of the cause of the annihilation rather 
than of its effect! Since its occurrence now has a causal link to the initial 
state this creates no difficulty.) 

That the observer, in our problem, has no a priori knowledge of the 
existence of the Stueckelberg time-barrier field is a reflection of the primary 
experimental fact that he does not live (i.e. make observations, formulate 
laws, manipulate events) 'four-dimensionally'. He lives 'three-dimen- 
sionally', formulating laws in terms of four-dimensional invariants. He 
does not have the knowledge, at t = -c% of physical conditions near t = 0, 
unless he takes suitable action guaranteed to produce, within experimental 
error, a known set of conditions. He lacks the space-time overview. 

We proceed with the observer representation of the annihilation process 
based on (3.13), introducing the total action equation (3.8) with observer 
Lagrangian given by equations (B.12) and (B.13) in the frame where u ~ = 1, 
and u ~ = u 2 = u 3 = 0. The corresponding equations of  motion give 

(mb 2 -- K2/t2)l/2v i 
Pl = ~/(1 - vi) 2 = constant, i = 1, 2 (3.14) 

so in this frame the annihilation of each of the particles occurs at constant 
'momentum' by the 'fading' of the factor M = (mb 2 - KE/t2) 1/2 with an 
attendant rise of v, until the 'light barrier' is reached and M has fallen to 
zero. At this point a tachyon is 'produced' linking the two particles and the 
annihilation is complete with the (temporal) passage of the tachyon. 

4. Canonical Formulations and Lorentz-Invariant Tachyon 
Propagation 

Canonical formulations of Stueckelberg dynamics do not appear to 
contain anything of interest and would be beside the point in the present 
theory. Both the observer and Stueckelberg-Jacobi Lagrangians are 
reasonable starting points however. 

For  the free bradyon equation (2.37) gives the Hamiltonian 

H = +(p2 + mb2)l/2 (4.1) 

The Hamiltonian of the extended phase space vanishes identically and 
corresponding to this there is a constraint among the extended phase space 
canonical coordinates; in the present example it is 

Pt + (p2 + mb2)l/2 ~, 0 (4.2) 

This is a first-class constraint in the trivial sense and may be regarded as 
the starting point for canonical quantization, generating the Schr6dinger 
equation of the quantized theory. 

For  free tachyons there is no observer Lagrangian on which to base a 
canonical theory of  the foregoing type. Nevertheless it is possible to represent 
tachyons as possessing a Lorentz-invariant propagation character. 
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I f  we start from either of the Stueckelberg-Jacobi Lagrangians (2.29) 
we find the canonical constraint, 

f (ea)  = [__gaa(pt~pt~ __papa + 2 p , 0 ]  1/2 __ gaa 6.apa ~ 0 (4.3) 

wherein the summation convention has been suspended for the index a, 
which is allowed to take any of the values from 0 to 3, and ~a = E(dx~/d~). 
For  bradyons 2pa > 0 and pu is a timelike vector on the constraint surface. 
But only for the choice a = 0 is the classification of the trajectories generated 
by the sign of E a in (4.3) Lorentz invariant. Correspondingly, bradyon 
coordinates may be regarded as representing a localized influence which 
propagates from spacelike hyperplanes, i.e. which evolves in time. For 
tachyons 2pa < 0, p~, is a spacelike vector on the constraint surface, and 
there is no choice of a for which the classification of the trajectories generated 
by the sign of  ea in (4.3) is Lorentz invariant. Correspondingly, tachyon 
coordinates may not be regarded as representing a localized influence which 
propagates from either spacelike or timelike hyperplanes, in an invariant 
way. 

These features are hidden when we replace the constraint (4.3) by 

F = _gaa F(ea) F(__,a) = p~p~ + 2pa ~ 0 (4.4) 

The equations of motion in the extended phase space, with F as the 
Hamiltonian, then give extra solutions for each value of  a, corresponding 
to propagation in which dxa/dA < 0. In the Klein-Gordon equation 
for bradyons these show up as the negative 'frequency' solutions and have 
to be disentangled from the solutions based on the Schrtdinger equation 
by means of  the causal propagator. The procedure is invariant for 
bradyons but the obvious generalizations to the tachyon case are not. 

To solve the problem we have to find a canonical constraint which 
provides an invariant E. There are two obvious ones, each corresponding to 
spatial propagation, in the variable ~ = (x~x~) 1/2 in the one case and in the 
variable r = (xkx~) 1/z in the other. We need only consider one of these, and 
the second will do. 

I f  we introduce hypercylindrical coordinates relative to a given event e 
at  the origin, 

x ~ = t, x I = rcos 0cos~ 

x 2 = rcos 0 sin ~b, x 3 = rsin 0 (4.5) 

then we find the canonical constraint, 

_{mtZ + p 2  _ r-Z[po z + csc 2 0p~2]}1/2 + ~ p ,  ~ 0 (4.6) 

Thus the physically meaningful characterization of tachyon propagation, 
which is spatial rather than temporal, is (either inwards or outwards) 
through hypersurfaces of dosed timelike cylinders or, what is topologically 
equivalent, to or from timelike lines. 
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There is a sense in which these separate characterizations of the propaga- 
tion of particles and tachyons is unique. There are five classes of Lorentz- 
invariant hypersurfaces: the forward and backward light cones, the 
corresponding timelike pseudospheres and the spacelike pseudosphere. 
The light cones from a given event separate the other three classes of 
hypersurface centered at the same event. A world line which propagates 
spatially to a given event e passes through a concentric spacelike pseudo- 
sphere. The characterization of tachyon propagation in terms of timelike 
cylinders is provided by the one-to-one projection mapping of the pseudo- 
sphere onto the portion of a cylinder surrounding e which is caught between 
its intersections with the two branches of the double cone having vertex at e. 
An analogous construction is possible for particles. 

Before turning to the photon we compare the 'squared constraints' for 
the two kinds of scalar field coupling given by equations (2.57a) and (3.1) 
For the former we find 

P~P~ + ~(Pa) [m - ~(pa) f~(x)] 2 ~ 0 (4.7) 

and for the latter, 
p~p~ + e(pa) m 2 + 2a~(x) ~ 0 (4.8) 

The first of these generalizes the minimal substitution rule to interaction 
with an external scalar field because it factors invariantly into forward- 
and backward-propagating particle and anti-particle solutions. The 
second of these lacks this property and gives the Klein-Gordon equation 
with an external Yukawa field; this observation makes the analysis of 
Section 3 more interesting. (Though the example of equation (3.9) corre- 
sponds to a zero mass 'pion' it does not appear that the inclusion of an 
exponential tail will affect any of its qualitative features.) 

The free photon canonical formalism based on the observer Lagrangian 
of equation (2.44) involves a pair of second class constraints, P~o ~ 0 and 
t.o - -  (112) 1/2 ~ 0 ,  which can be eliminated. The resulting total Hamiltonian is 

Hr = +(p2)1/2 (4.9) 

The extended space Lagrangian based on the observer Lagrangian of 
equation (2.44) is 

L~' =-}oJ( t=-  t' ) (4.10) 

which is a homogeneous function of the first degree in the generalized 
velocities. The corresponding Hamiltonian therefore vanishes identically 
and the concommitant canonical constraint is 

p, + (2~o)-~ p2 + �89 ~ 0 (4.11) 

which, after elimination of ~o, Po~ by means of the second-class pair of 
constraints p~ ~ 0 and co - (p2)1/2 ~ 0, reduces to 

Pt + (p2)1/2 ,~ 0 (4.12) 
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Thus canonical quantization generates the Schrrdinger equation based on 
(4.9). The relations po~ = 0, oJ - (p2)1/2 = 0 then become equations defining 
p~  and w. 

5. Concluding Remarks  

The conventional causal framework regards the observer as, among 
other things, the interpreter of  the regularities of  the patterns of  space-time 
events, with an event identified with a matter  point at an instant. The 
present effort has been an at tempt to make some of  those ideas concrete 
in a simple context. I t  would have been natural to add another section 
to this paper dealing with the many-trajectory case where the Stueckelberg 
action integral is of  a generalized Fokker  type. t  This would give a 
rather general kind of theory of  the classical relativistic mechanical 
problem of  interacting particles. 

We have found the unique and invariant characterization of  tachyon 
propagation and noted that  this is not causal, i.e. not temporal,  but  is 
spatial. Tachyon 'production'  can be controlled (caused) in time, however 
(Cawley, 1970). We have discussed canonical theories along with different 
approaches to canonical quantization, finding familiar classical field 
equations. We have not discussed the problem of  the observer representa- 
tion of  the classical field theories. Finally, we have not considered discrete 
invariances. 
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Appendix A 

Constant Scalar FieM o f  Degree Zero 

The scalar field example 

c~(x) = a - l  k[x  2 + (x.  u)Z] -1/2 - a -1 kr  -1 (A.1) 

where u is a constant timelike unit vector, gives rise to Minkowski curves 
with tangent vectors whose signature can change. The Euler-Lagrange 
equations of  the Stueckelberg action principle (2.3) with Stueckelberg 
Lagrangian (3.1) are 

t Fokker, A. D. (1929). ZeitschriftJ~r Physik, 58, 38.6. If N Minkowski curves like 
the one in eq. (2.1) are given, then we could require that the coordinate function sets 
x,~(A), n = 1 to N, be derivable as solutions to a system of equations following from N 
action principles based on equations 3,As = O, n = 1 to N, where the 3,-variation of As 
is generated by infinitesimal fixed endpoint variations of the nth trajectory alone. 
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d 2 x u 
dA 2 = -a$ 'V(x)  = k[xV + #'(u.  x)] r-3 (A.2) 

so choosing coordinates with u ~ = 1, u i = 0, i = 1, 2, 3, we have 

d 2 X 0 d 2 X i 
dA z = O, dh z = kx  lr -3 (A.3) 

where r = I#x~[ 1/2 = Ixl. From equation (3.2) we have 

Pa + } ~dal 2 \-d~ l = - k , ' - '  (A.41 

From the first of  equations (A.3), 

dx ~ 
- -  = E = constant (A.5) 
dA 

The constancy of dx~ simplifies the determination of the spatial part  
of  the four-dimensional motion, for it allows the direct integration of 
equation (A.4). Introducing polar coordinates in the plane of the spatial 
motion we have 

1-[[dr]2 ] 
Pa + 21 \dh]  + j 2  r-2 _ E 2 = _ k r - i  (A.6) 

where the (positive) constantj  is associated with the absence of 0-dependence 
in Ls; namely 

2 dO 
j = r ~ (A.7) 

From equation (A.6) the distance of closest approach to r = 0 can be found 
as the smaller of  the two solutions to 

Pa + �89 r-Z _ E 2) = _ k r - I  (A.8) 

namely one of 

r+_ = ( E  2 - 2pa) -1 {k • [k 2 + j 2 ( E 2  - 2pa) ]  1/2} (A.9) 

We consider two cases simultaneously. In Case 1, k < 0 and we choose 
initial conditions so that E 2 > 2pa > 0 and dx/dh is timelike asymptotically. 
In Case 2, k > 0, Pa < 0, and dx/d;t is asymptotically spacelike. In both 
cases the distance of closest approacht  is r+ and at this point we have 

The right side of (A.10) is positive in Case 1 i f jpa/E < - k  and is negative 
in Case 2 if - jpa /E  < k. In each of these examples the signature of  the 
tangent vector is reversed as the curve crosses the surface of the Minkowski 

t d 2 rid ,~2 > 0 holds at r+ for the two examples considered. 
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cylinder:~ r = r 0 = - k i p  a. Finally, we note that  for  pa = 0, dx/dA is null 
at infinity and can be either spacelike or timelike in close to the source, 
depending on the sign o f  k. 

Appendix B 

Uniform Time-Dependent Scalar FieM of Degree Zero 

Scalar field examples o f  the type 

d?(x) = a-l  f ( - x .  u) - a - I f ( t ) ,  with lim f ( t )  = 0 (B.1) 
Itl-~oo 

where u is a constant  timelike unit vector, can generate Minkowski  curves 
which reverse direction invariantly in the time coordinate.  The Euler -  
Lagrange equations o f  the Stueckelberg action principle (2.3) with Lagran-  
gian (3.1) are 

6 2 X u 
dh 2 = -a(JU(x) = uU f ( t )  (B.2) 

where the dot  denotes differentiation with respect to the argument.  With  
the choice o f  coordinates used in Appendix A we have 

d 2 x 0 d 2 t d 2 x i 
dh z dh 2 f ( t ) ,  dh 2 --- 0, i = 1,2, 3 (B.3) 

and f rom equation (3.2) 

where we have set 

�89 z l ( d t ~  2 
- ~ \ ~ :  = - f ( t )  (B.4) 

which is the solution to the spatial par t  o f  the set, equations (B.3). 
For  definiteness we consider the example 

_/r 
f ( t )  = 

for  which equation (B.4) becomes 

dA] t z 

One can verify that in the examples considered ro > r+ when [k[ >j[px[/E. 

(B.6) 

(B.7) 

1 [dxX z = �89 2 

since, owing to f (~o)  = 0, the left side o f  (B.5a) is nonnegative, and where 
we have used 

dx 
P = constant  = dh (B.5b) 
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For  the example that  t -+ -oo at A -+ - ~ ,  the entire curve lies below the 
hyperplane 

--K 2 
t = to = - f f  < 0 (B.8) 

and the time coordinates o f  the events ei at which equations (3.6) hold are, 
for  Pa > 0, 

f~ = t2 = f = -_x < 0 (B.9) 
m 

where m---+(2pa) 1/2. The  curve is shown in Fig. 1 as curve A, and for  
suitable choice o f  origin it can be parametrized by 

x ~ = t = - ( to  2 + E 2 ?t 2) 1/2, x = P?t (B. 10) 

Note  that  events el and e2 are essentially simultaneous.'~ 
Fo r  t < to there are two branches, whose trajectories are given by 

P 2 to2) 1/2, xi(t)  = •  -- t< to<O,  i----1,2 ~ . 1 1 )  

These represent two identical bradyon particles for  t < i and the (formal) 
observer Lagrangian is 

L a  = L ~  + LQ2 (B.12) 
where 

/ K \2 ] t /2  
Ls~, = - m  1 - [ ~ - )  ] (1 - 3,2) '/2, i=  1,2 (B.13) 

For  f < t < to the mot ion  is faster than light. 
The form (B.13) is actually not  Lorentz  invariant because we elected a 

specific frame to exhibit the features of  the present example. This is remedied 
by replacing t with (-x~.u), where x l ~  x 2 ~  t supplies the explicit t- 
dependence to L~,. 
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